Современные рабочие процессы с многоуровневым хранением

Джанет Лефлер, старший маркетинг-менеджер по продукции, Quantum

самого появления цифровых рабочих процессов люди спорили о том, хранилища какого типа оптимальны для того или иного этапа техпроцесса. Но одно ясно совершенно точно — на каждой стадии техпроцесса к хранилищам предъявляются разные требования, а потому нужна стратегия своего рода многоуровневого хранения. Поскольку библиотеки цифровых активов неуклонно растут, хранение всех материалов на высокопроизводительных дисках непрактично и дорого.

Традиционное многоуровневое хранение незамысловато: большинство активов, в том числе и недавно использованные данные, хранится на максимально быстрых, а потому самых дорогих носителях, а реже используемые данные (а также более ранних версий) хранятся в менее скоростных системах – обычно на ленте или в недорогих дисковых массивах. Чтобы упростить управление уровнями, было создано ПО HSM (hierarchical storage management — управление иерархическим хранением). Его задача — автоматизировать перенос данных между уровнями и сделать доступ для файловой системы прозрачным вне зависимости от того, где хранятся дан-

ные. Когда основное хранилище заполняется «выше ватерлинии», к примеру, на 90%, ПО HSM найдет файлы, используемые реже всего, и переместит их во вторичный уровень на ленте, где продолжится их хранение, пока не освободится место на первичном уровне.

Эта модель многоуровневого хранения была создана для бизнес-данных с приоритетом их ценности. Дисковые системы дороги, лента дешевле, а устаревшие бизнес-данные редко имеют важность за исключением случаев аудита. Стало быть, требовалось достигать оптимального соотношения между производительностью, скоростью доступа и ценой.

В рабочих процессах для медиаданных не используются бизнес-данные. Рабочие процессы для медиаданных куда более сложны, с требованиями, которые часто различаются в зависимости от того, как контент используется на каждой стадии обработки. Различные пользователи, вовлеченные в обработку контента и использующие разные приложения, предъявляют к хранению разные требования, часто выходящие за пределы производительности и доступности. А более ранний контент вовсе не обязательно должен быть помещен в долговременный (медленный) архив. В то же время, появились новые опции

хранения, такие как объектное хранение, хранение на Flash-носителях и облачные сервисы, и они открывают определенные возможности.

Решение заключается в приведении типа хранения в соответствие с требованиями каждой конкретной стадии рабочего процесса, не забывая при этом о стоимости и принимая в расчет следующие четыре критерия.

Масштабируемость

Поскольку разрешение изображения существенно выросло, добавление каждого бита к глубине представления цвета и увеличение числа съемочных камер приводит к росту объемов контента, который нужно захватить и которым надо манипулировать. Соответственно растут и емкости дисков, но массивы RAID, формируемые из таких дисков повышенной емкости, требуют и больше времени на восстановление после сбоев, из-за чего периоды недоступности данных во время восстановления тоже увеличива-

ются. С другой стороны, FEC-алгоритмы кодирования при объектном хранении защищают данные от потери при отказе большего числа дисков экономически эффективнее, чем RAID, а простота пространства хранения, присущая объектной модели, устраняет часть проблем, связанных с управлением несколькими файловыми системами или томами хранения.

Между тем, масштабирование по запросу часто столь же важно, как и просто масштабирование. Облачное хранение позволяет пользователям увеличивать емкость хранения почти мгновенно, заплатив за нужные объемы. Можно и уменьшить оплаченную емкость, когда проект, например, завершен. И, разумеется, есть еще управляемые ленточные библиотеки, наращивание емкости которых практически безгранично.

Долговечность

Вне зависимости от типа носителей, используемых для хранения контента, рано или поздно носитель выводится из эксплуатации. Для компаний, обладающих библиотеками длительного хранения цифрового контента, в дополнение к поддержке рабочих процессов работы с контентом, важно внимательно оценить срок службы хранилища. Большинство производителей рекомендует выполнять замену традиционных жестких дисков не позднее чем через четыре года, тогда как срок службы ленточных картриджей составляет ориентировочно 15...30 лет, а носителей типа SSD - и того больше. В целом, большинство компаний переносят данные в хранилища более высокой плотности задолго до того, как носители выйдут из строя. Скажем, из RAID-массивов на 2 ТБ в массивы на 6 ТБ, а также из LTO-5 в LTO-7.

К сожалению, по мере роста объемов данных увеличивается и время, необходимое для выполнения процесса копирования-записи при переносе данных.

Хранение других типов позволяет облегчить бремя, связанное с регулярным переносом контента при эксплуатации библиотек. Объектное хранение снижает сложность такого переноса. В отличие от RAID-массивов, объектное хранение позволяет совместно использовать диски разного объема и типа в составе одной системы. Присущий объектному хранению стандартный процесс восстановления баланса после отказа диска можно использовать для переноса данных в диски более высокой плотности. Роботизированные ленточные библио-

Системы хранения Quantum

Несмотря на распространенное мнение, изменения не постоянны – они ускоряются. Практически невозможно предсказать влияние инноваций типа **8K, UHD, OTT или EST** на потребности в вычислительной мощности, сетевых ресурсах и хранении. На платформе StorNext® 5 вы можете учесть изменения в своем планировании, вместо простого реагирования на них, и превратить усовершенствования в свои преимущества.

Quantum® can show you how to POWER WHAT'S NEXT.

теки часто обладают встроенными функциями переноса данных, оптимально запланированных на то время, когда библиотека используется наименее активно. А что касается облачного хранения, перенос данных на новые носители становится обязанностью провайдера облачных сервисов, а не обладателя контента. Плата за это входит в стоимость сервиса.

Подключение

Дискуссия о преимуществах NAS через TCP/IP перед SAN через Fibre Chanel продолжается. Широкое распространение NAS и IP Ethernet делает этот вариант проще для развертывания и добавления клиентов, а это несомненное преимущество. Но даже в эпоху высокоскоростного Ethernet системы SAN коллективного доступа обеспечивают более высокую производительность, потому что в этой модели путь управления доступом к файлам отделен от пути передачи данных. Теперь, когда растет необходимость в том, чтобы сделать контент доступным в любом месте и на любом устройстве - от смартфонов до ноутбуков, все актуальнее становится требование организовывать доступ к хранилищам по протоколам S3, HTTP и REST.

Эта тенденция к распространению доступа через web также порождает и тенденцию к использованию объектов как контейнеров для контента в дополнение к нынешним стандартным файлам. Растущее число приложений для рабочих процессов, от МАМ до транскодирования, теперь может работать не только с файлами, но и с объектами. Наилучшие системы хранения обладают всеми опциями подключения — как NAS, так и SAN; как для файлов, так и для объектов.

Належность

Хотя контент становится доступным везде и любым способом, хранилище, которое поддерживает его жизнь, - это физическая структура, а значит, она подвержена разрушению. Возможность хранить ленточные картриджи вне библиотеки делает их стандартным средством защиты данных, пусть и относительно медленным в плане восстановления информации. Традиционный подход состоял в создании нескольких копий, что удваивает стоимость аппаратных средств и добавляет изрядную долю расходов на администрирование. Присущие объектному хранению алгоритмы кодирования обеспечивают встроенные возможности географического рассредоточения, что привлекательно для крупномасштабных архивов длительного хранения контента. А в публичных облачных хранилищах ответственность за восстановление после сбоев перекладывается с обладателя контента на поставщика облачных сервисов.

Таким образом, принимая в расчет все обозначенные критерии, несложно оценить соответствующие опции хранения для каждой стадии рабочего процесса.

Онлайновое хранение для производства контента

Производство контента в высоком разрешении требует от системы хранения малой задержки и высокой производительности, чтобы можно было направлять потоки контента HD, 4K и выше на несколько рабочих станций одновременно и без выпадения кадров. Требуется производительность чтения и записи примерно в 700 МБ/с на каждого пользователя или приложение, чтобы передавать файлы разрешением 2К и выше. Такие уровни производительности требуют от системы хранения не только малой задержки, но и применения протокола с малой задержкой, созданного для потоковой передачи, такого как Fibre Channel или Infiniband. Технологические операции в режиме реального времени, предъявляющие такие требования, - это монтаж, цветокоррекция, создание эффектов, живые ввод и воспроизведение, а также финальная сборка материала. В данном случае рекомендуются онлайновые хранилища на базе SSD и высокоскоростных RAID-массивов, причем гибридные SSD/HDD-решения лидируют по соотношению стоимости и производительности.

Расширенное онлайновое хранения для извлечения выгоды

Ценность контента не исчезает после его первичной доставки. Широкое разнообразие новых каналов и платформ доставки, а также сопутствующий контент третий экран, просмотр ОТТ, материал типа «за кулисами», различные версии одного и того же контента, другие специальные функции, позволяют получать выгоду от контента практически бесконечно. В этом случае применяется рабочий процесс, предполагающий куда более эффективные транскодирование и доставку, чем когда-либо ранее. Серверы транскодирования и доставки должны быть подключены к хранилищу, способному обеспечить пропускную способность 70...110 Мбит/с с высоким значением IOP (Input/Output Performance - производительность ввода/ вывода) для файлов очень малого размера, зачастую всего 4...8 кБ. Для этих технологических операций лучше всего подходит ІР-подключение к хранилищу. Здесь рекомендуется объектное хранение, в частности, решения, тесно интегрированные с онлайновыми системами хранения.

Долговременный архив для защиты и сохранения данных

Была ли получена прибыль от продажи ранее созданного контента или нет, его нужно сохранить и защитить от утраты. По мере роста библиотек цифровых активов, масштабируемость, долговечность и экономичность хранилища выходят на передний план. В то же время, библиотеки активов должны быть удобны в плане поиска и доступа к данным из систем МАМ. Если контент нельзя быстро найти и извлечь, его потенциал резко снижается. А для защиты от катастроф такое хранилище должно поддерживать определенный уровень географического рассредоточения либо с помощью резервного копирования, либо с применением более сложных методов. Здания могут пострадать от пожара или потопа. Если контент должным образом не защищен, он может быть утерян навсегда. Рекомендуемым для долгосрочных архивов хранилищем является объектное и на базе ленточных LTO/LTFS-библиотек.

Автоматизация для упрощения работы с данными

И, наконец, приведение контента и его хранения в соответствие с потребностями того или иного этапа рабочего процесса – это еще не все. Ни одно решение по технологическому хранению данных, какого бы типа оно ни было, не может считаться полноценным без средств автоматизации и тесной связи между хранилищами разных типов. Как и в случае с устаревшими HSM-системами, рабочие процессы нуждаются в средствах автоматизации для переноса данных и управления этим новым смешанным хранением, включая прозрачный доступ к данным и для пользователей, и для приложений. Но теперь отличие в том, что правила их подключения должны быть более развитыми, чтобы отвечать повышенным требованиям, которые предъявляют современные сложные рабочие процессы.

Заключение

Компания Quantum вышла за пределы традиционных подходов к построению многоуровневых систем хранения, благодаря чему смогла сформировать технологический процесс хранения, оптимизированный для различных стадий работы с контентом. Платформа StorNext 5 позволяет создателям контента и его владельцам оптимизировать свои хранилища, будь то системы на базе SSD, HDD, объектное хранение, LTO-картриджи или облака, для различных стадий комплексных процессов работы с медиаданными. StorNext позволяет управлять уровнями хранения в рамках рабочего процесса как единой инфраструктурой, обладающей функциями автоматизированного свободного перемещения данных.

НОВОСТИ

Clear-Com приобела компанию Trilogy Communications

В конце лета нынешнего года компания НМ Electronics (НМЕ) объявила о завершении сделки по приобретению британской компании Trilogy Communications, а приобретателем стала дочерняя по отношению к НМЕ компания Clear-Com, специализирующаяся на системах связи, функционирующих в режиме реального времени. Что касается Trilogy, то это поставщик систем служебной связи и генераторов опорного сигнала для вещания, обороны и промышленности. Clear-Com планирует за счет этого приобретения усилить свои позиции на вещательном рынке и ускорить внедрение своих разработок в военную и промышленную сферы.

Trilogy продолжит свою деятельность как дочернее подразделение компании Clear-Com. А та, в свою очередь, предпримет усилия для интеграции линеек систем связи Trilogy, в частности, Gemini,

Messenger, Mentor и Mercury, в ассортимент своей продукции, чтобы расширить рынок сбыта.

«Мы рады объявить об этой сделке, – сказал исполнительный директор Clear-Com Митци Домингес (Mitzi Dominguez). – Обе компании работали в сфере профессиональной служебной связи многие десятилетия, накопили в этой сфере большой опыт и значительные знания. Усилия объединенного коллектива будут направлены на то, чтобы чтобы полнее удовлетворять запросы наших пользователей по всему миру и открыть новые бизнес-возможности для обеих компаний».

«Trilogy хорошо вписывается и в культуру нашей компании, и в наши технологические разработки, – отметил президент Clear-Com Боб Бостер (Воb Boster). – Специализированные матричные системы этой компании отлично дополняют программируемые в широких пределах, масштабируемые цифровые матрицы Clear-Com. Благодаря этому расширяются возможности каждого из подразделений в плане удовлетворения постоянно растущих потребностей в связи для тех секторов рынка, в которых мы работаем. Решения Trilogy SPG также будут хорошо восприняты нашими пользователями-вещателями по всему миру».

А представитель Trilogy Communications Мартин Пек (Martin Peck) сказал: «Trilogy достигла очень многого в сфере специализированной связи и хорошо известна высоким качеством обслуживания клиентов. Clear-Com получила признание за широту ассортимента продукции, технические инновации, впечатляющий уровень поддержки и развитую глобальную сервисную сеть. Очевидно, что объединение этих компаний позволит еще лучше удовлетворять потребности наших общих клиентов».

Международная ассоциация производителей вещательного оборудования IABM объявила в середине августа о заключении стратегического партнерства с Ассоциацией международного вещания АІВ. В ІАВМ входит 450 компаний со всего мира, каждая из которых занимается разработкой и выпуском оборудования, применяемого для вещания и распространения медиаконтента, а также совершенствованием медиатехнологий. В состав AIB входят 70 крупнейших глобальных вещательных компаний, а активное сообщество организации насчитывает 27 тыс. представителей руководства медиакомпаний из 160 регионов планеты. Таким образом, это партнерство объединяет обе стороны индустрии и позволит открыть возможности для общения, а значит, удастся обеспечить более тесное сотрудничество.

«Мы очень рады этому новому взаимодействию, – отметил председатель AIB Саймон Спансвик (Simon Spanswick). – Важно, что есть понимание нужд и потребностей вещателей в современных условиях,

Союз производителей и вещателей

когда изменения происходят быстро и достаточно регулярно. Без компаний, входящих в IABM, и выпускаемого ими оборудования практически невозможно создавать и распространять программы, поэтому имеет смысл организовать общение между теми, кто создает контент, и теми, кто выпускает аппаратуру для этого. Поскольку члены AIB сталкиваются со все более серьезными испытаниями, включая изменение привычек аудитории, кибер-атаки и необходимость работать более надежно, диалог между двумя сторонами индустрии крайне важен».

«Члены IABM обратились к нам за помощью в организации диалога и сотрудничества, а также в достижении взаимопонимания с пользователями оборудования, а потому это партнерство оказалось нужным и членам нашей организации, и более широкому профессиональному сообществу, — сказал директор IABM Питер Уайт (Peter White). — AIB яв-

ляется отличным партнером для IABM, и совместная работа будет способствовать достижению целей каждой из организаций. Если кратко, мы создали открытый форум, который позволит установить более прочные и тесные взаимоотношения между всеми участниками отрасли как со стороны поставщиков технологий, так и со стороны их потребителей.

АІВ имеет международный охват и знает, как помочь членам IABM лучше понять сложности и возможности, которые возникают на быстро меняющемся медиаландшафте. Это стратегическое партнерство будет полезно членом IABM, так как позволит им разрабатывать новые полезные устройства и сервисы, отвечающие реальным, а не воображаемым потребностям пользователей. По мере развития отношений между двумя ассоциациями будет появляться все больше областей для взаимодействия к выгоде всех участников процесса».

